quinta-feira, 31 de julho de 2008

Poesia Matemática


Às folhas tantas
do livro matemático

um Quociente apaixonou-se
um dia
doidamente
por uma Incógnita.
Olhou-a com seu olhar inumerável
e viu-a do ápice à base
uma figura ímpar;
olhos rombóides, boca trapezóide,
corpo retangular, seios esferóides.
Fez de sua uma vida
paralela à dela
até que se encontraram
no infinito.
“Quem és tu?”, indagou ele
em ânsia radical.
“Sou a soma do quadrado dos catetos.
Mas pode me chamar de Hipotenusa.”
E de falarem descobriram que eram
(o que em aritmética corresponde
a almas irmãs)
primos entre si.
E assim se amaram
ao quadrado da velocidade da luz
numa sexta potenciação
traçando
ao sabor do momento
e da paixão
retas, curvas, círculos e linhas sinoidais
nos jardins da quarta dimensão.
Escandalizaram os ortodoxos das fórmulas euclidiana
e os exegetas do Universo Finito.
Romperam convenções newtonianas e pitagóricas.
E enfim resolveram se casar
constituir um lar,
mais que um lar,
um perpendicular.
Convidaram para padrinhos
o Poliedro e a Bissetriz.
E fizeram planos, equações e diagramas para o futuro
sonhando com uma felicidade
integral e diferencial.
E se casaram e tiveram uma secante e três cones
muito engraçadinhos.
E foram felizes
até aquele dia
em que tudo vira afinal
monotonia.
Foi então que surgiu
O Máximo Divisor Comum
freqüentador de círculos concêntricos,
viciosos.
Ofereceu-lhe, a ela,
uma grandeza absoluta
e reduziu-a a um denominador comum.
Ele, Quociente, percebeu
que com ela não formava mais um todo,
uma unidade.
Era o triângulo,
tanto chamado amoroso.
Desse problema ela era uma fração,
a mais ordinária.
Mas foi então que Einstein descobriu a Relatividade
e tudo que era espúrio passou a ser
moralidade
como aliás em qualquer
sociedade.

(Millôr Fernandes)

terça-feira, 29 de julho de 2008

O Professor Está Sempre Errado

Quando...

É jovem, não tem experiência.

É velho, está superado.

Não tem automóvel, é um coitado.

Tem automóvel, chora de "barriga cheia".

Fala em voz alta, vive gritando.

Fala em tom normal, ninguém escuta.

Não falta ao Colégio, é um "Caxias".

Precisa faltar, é "turista".

Conversa com os outros professores,

está "malhando" os alunos.

Não conversa, é um desligado.

Dá muita matéria, não tem dó dos alunos.

Dá pouca matéria, não prepara os alunos.

Brinca com a turma, é metido a engraçado.

Não brinca com a turma, é um chato.

Chama à atenção, é um grosso.

Não chama à atenção, não sabe se impor.

A prova é longa, não dá tempo.

A prova é curta, tira as chances do aluno.

Escreve muito, não explica.

Explica muito, o caderno não tem nada.

Fala corretamente, ninguém entende.

Fala a "língua" do aluno,

não tem vocabulário.

Exige, é rude. Elogia, é debochado.

O aluno é reprovado, é perseguição.

O aluno é aprovado, "deu mole".

É, o professor está sempre errado mas, se

você conseguiu ler até aqui, agradeça a ele!

A matemática é interessante e divertida.



Deixo-vos um interessante desafio matemático. Vale a pena, não se trata de uma perda de tempo e é bastante divertido. Além, do mais não demora mais do que um minuto.


Não vale ler já o final. Isso não.


1. Em primeiro lugar fixe o número de vezes que gostaria de ir jantar fora durante uma semana. Mais do que uma vez e menos do que dez.

2. Multiplique o número anterior por 2 (... é só para assegurar que dê um número par!)

3. Some 5 ao resultado anterior.

4. Multiplique por 50. Bem eu sei, aqui se precisar de uma caneta e de um papel tudo bem. Eu espero ....

5. Agora se já fez anos este ano some 1758 ... Se ainda não fez some apenas 1757.

6. Agora ao resultado subtraia o seu ano de nascimento.

Encontrou um número composto por três dígitos. Não foi? Pois claro.

Então posso-lhe dizer que o primeiro algarismo é a sua resposta à primeira pergunta (o número de vezes que gostaria de jantar fora durante uma semana) e os outros dois algarismos representam ... a sua idade. É verdade!!!

Conseguiu? Parabéns!!

Curiosidades matemáticas

Você conhece o número mágico?

1089 é conhecido como o número mágico. Veja porque:

Escolha qualquer número de três algarismos distintos: por exemplo, 875.
Agora escreva este número de trás para frente e subtraia o menor do maior:
875 - 578 = 297

Agora inverta também esse resultado e faça a soma:
297 + 792 = 1089 (o número mágico)

Curiosidade com números de três algarismos

Escolha um numero de três algarismos:
Ex: 234
Repita este numero na frente do mesmo:
234234
Agora divida por 13:
234234 / 13 = 18018
Agora divida o resultado por 11:
18018 / 11 = 1638
Divida novamente o resultado, só que agora por 7:
1638 / 7 = 234
O resultado é igual ao numero de três algarismos que você havia escolhido: 234.

O que é um número capicua?

Um número é capicua, também conhecido como palíndromo, quando lido da esquerda para a direita ou da direita para a esquerda representa sempre o mesmo valor, como por exemplo 77, 434, 6446, 82328. Para obter um número capicua a partir de outro, inverte-se a ordem dos algarismos e soma-se com o número dado, um número de vezes até que se encontre um número capicua, como por exemplo:

Partindo do número 84: 84+48=132;132+231=363, que é um número capicua.

O que são números ascendentes?

Um número natural é chamado de ascendente se cada um dos seus algarismos é estritamente maior do que qualquer um dos algarismos colocados à sua esquerda. Por exemplo, o número 3589.

Quanto vale um centilhão?

O maior número aceito no sistema de potências sucessivas de dez, é o centilhão, registrado pela primeira vez em 1852. Representa a centésima potência de um milhão, ou o número 1 seguido de 600 zeros (embora apenas utilizado na Grã-Bretanha e na Alemanha).

Data histórica: 20/02 de 2002

Quarta-feira, dia 20 de fevereiro de 2002 foi uma data histórica. Durante um minuto, houve uma conjunção de números que somente ocorre duas vezes por milênio.

Essa conjugação ocorreu exatamente às 20 horas e 02 minutos de 20 de fevereiro do ano 2002, ou seja, 20:02 20/02 2002.

É uma simetria que na matemática é chamada de capicua (algarismos que dão o mesmo número quando lidos da esquerda para a direita, ou vice-versa - também conhecidos como números palíndromos). A raridade deve-se ao fato de que os três conjuntos de quatro algarismos são iguais (2002) e simétricos em si (20:02, 20/02 e 2002).

A última ocasião em que isso ocorreu foi às 11h11 de 11 de novembro do ano 1111, formando a data 11h11 11/11/1111. A próxima vez será somente às 21h12 de 21 de dezembro de 2112 (21h12 21/12/2112). Provavelmente não estaremos aqui para presenciar.

Depois, nunca mais haverá outra capicua. Em 30 de março de 3003 não ocorrerá essa coincidência matemática, já que não existe a hora 30.

Quadrados de números inteiros

O quadrado de um numero é um dos inteiros da série 1, 4, 9, 16, 25, etc. Não se torna difícil verificar a relação entre os membros consecutivos desta série. Verificamos que se somarmos o quadrado de x , mais duas vezes x mais 1 , o próximo quadrado sucessivo é obtido.

Por exemplo , 52 + 2.5 + 1 = 25+10+ 1 = 36 = 62

Se soubermos o valor de um determinado número ao quadrado, o próximo numero é facilmente obtido.
Exemplo: Sabendo que o quadrado de 18 é 324 , temos:

192 = 182 + 2.18 + 1 = 324+36+ 1 = 361

A razão para tal fato verifica-se pela relação algébrica:

(a + b)2 = a2 + 2ab + b2

19 = (18 + 1) = 182 + 2.18.1 + 12 = 361

Quadrados perfeitos e suas raízes

Os pares de quadrados perfeitos:

144 e 441, 169 e 961, 14884 e 48841

e suas respectivas raízes:

12 e 21, 13 e 31, 122 e 221, são formados pelos mesmos algarismos, porém escritos em ordem inversa.

O matemático Thébault investigou os pares que têm esta curiosa propiedade. Encontrou, por exemplo, a seguinte dupla:

11132 = 1.238.769 e 31112 = 9.678.321

Números amigáveis são pares de números onde um deles é a soma dos divisores do outro.Como exemplo, os divisores de 220 são: 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 e 110 cuja soma é 284. Por outro lado, os divisores de 284 são: 1, 2, 4, 71 e 142 e a soma deles é 220. Fermat descobriu também o par 17.296 e 18.416. Descartes descobriu o par 9.363.584 e 9.437.056.

Atividade em Sala
















segunda-feira, 28 de julho de 2008

Números Inteiros

Os números inteiros são aqueles de infinito negativo até o infinito positivo. O 0 está no meio dos dois, não sendo nem positivo, nem negativo.
Você pode achar os números negativos nos termômetros e abaixo do nível do mar.

http://www.brasilescola.com/matematica/numeros-inteiros.htm

http://pessoal.sercomtel.com.br/matematica/fundam/inteiros/inteiros.htm

Origem dos Sinais

Adição ( + ) e subtração ( - )
O emprego regular do sinal + ( mais ) aparece na Aritmética Comercial de João Widman d'Eger publicada em Leipzig em 1489.Entretanto, representavam não à adição ou à subtração ou aos números positivos ou negativos, mas aos excessos e aos déficit em problemas de negócio. Os símbolos positivos e negativos vieram somente ter uso geral na Inglaterra depois que foram usados por Robert Recorde em 1557.Os símbolos positivos e negativos foram usados antes de aparecerem na escrita. Por exemplo: foram pintados em tambores para indicar se os tambores estavam cheios ou não.
Os antigos matemáticos gregos, como se observa na obra de Diofanto, limitavam-se a indicar a adição juntapondo as parcelas - sistema que ainda hoje adotamos quando queremos indicar a soma de um número inteiro com uma fração. Como sinal de operação mais usavam os algebristas italianos a letra P, inicial da palavra latina plus.

Multiplicação ( . ) e divisão ( : )
O sinal de X, como que indicamos a multiplicação, é relativamente moderno. O matemático inglês Guilherme Oughtred empregou-o pela primeira vez, no livro Clavis Matematicae publicado em 1631. Ainda nesse mesmo ano, Harriot, para indicar também o produto a efetuar, colocava um ponto entre os fatores. Em 1637, Descartes já se limitava a escrever os fatores justapostos, indicando, desse modo abreviado, um produto qualquer. Na obra de Leibniz escontra-se o sinal para indicar multiplicação: esse mesmo símbolo colocado de modo inverso indicava a divisão. O ponto foi introduzido como um símbolo para a multiplicação por G. W. Leibniz. Julho em 29, 1698, escreveu em uma carta a John Bernoulli: "eu não gosto de X como um símbolo para a multiplicação, porque é confundida facilmente com x; freqüentemente eu relaciono o produto entre duas quantidades por um ponto . Daí, ao designar a relação uso não um ponto mas dois pontos, que eu uso também para a divisão."As formas a/b e , indicando a divisão de a por b, são atribuídas aos árabes: Oughtred, e, 1631, colocava um ponto entre o dividendo o divisor. A razão entre duas quantidades é indicada pelo sinal :, que apareceu em 1657 numa obra de Oughtred. O sinal ÷, segundo Rouse Ball, resultou de uma combinação de dois sinais existentes - e :

Sinais de relação ( =, <> )
Robert Recorde, matemático inglês, terá sempre o seu nome apontado na história da Matemática por ter sido o primeiro a empregar o sinal = ( igual ) para indicar igualdade. No seu primeiro livro, publicado em 1540, Record colocava o símbolo entre duas expressões iguais; o sinal = ; constituído por dois pequenos traços paralelos, só apareceu em 1557. Comentam alguns autores que nos manuscritos da Idade Média o sinal = aparece como uma abreviatura da palavra est. Guilherme Xulander, matemático alemão, indicava a igualdade , em fins do século XVI, por dois pequenos traços paralelos verticais; até então a palavra aequalis aparecia, por extenso, ligando os dois membros da igualdade.
Os sinais > ( maior que ) e < ( menor que ) são devidos a Thomaz Harriot, que muito contribuiu com seus trabalhos para o desenvolvimento da análise algébrica.

Os dedos e a tabuada do 9

Essa postagem, apresenta um processo de multiplicar um algarismo por 9 usando os dedos. Associa-se aos dedos de cada mão os números de 1 a 10 começando pelo dedo polegar.
Para saber o resultado de uma multiplicação por 9, levantam-se os 10 dedos das mãos.
O produto de 9 x n vê-se baixando o n-ésimo dedo a contar da esquerda para a direita. Por exemplo 9 x 4, corresponde a baixar o 4º dedo. Ficam 3 dedos levantados antes do dedo que se baixa, e 6 depois. O que significa 36, que é o resultado pretendido, como se observa na figura seguinte.
Do mesmo modo se faz para 9 x 9, como ilustra a imagem.


Mas, porque é que isto se verifica?

Baixando o n-ésimo dedo, ficavam então (n-1) dedos levantados à esquerda, o número das dezenas, e 10-n dedos levantados à direita, o número das unidades. Então,

10(n-1) + (10-n)= 10n - 10 + 10 - n= 9 x n.

Multiplicação usando os dedos

Durante a Idade Média e o Renascimento, poucas foram as pessoas que chegaram a conhecer a tabela de multiplicar para além de . Assim, usava-se um método muito popular que se baseava no uso dos complementos dos números dados relativamente a 10. Como tal, o complemento de n relativamente a 10 será 10-n.
Neste método era frequente usar os dedos das mãos como instrumento de cálculo . Associa-se aos dedos de cada mão os números de 6 a 10, começando pelo dedo mindinho.
Para multiplicar 7 por 8 tocam-se os dedos associados ao 7 e ao 8, como se observa na figura seguinte .

Note-se que o complemento de 7 está representado pelos três dedos superiores (situados acima dos dedos em contacto) de uma mão e o complemento de 8 pelos dedos superiores na outra mão. Os cinco dedos inferiores representam o 5, ou seja, 5 dezenas. A 50 adiciona-se o produto dos dedos superiores, , ou seja 6, dando no total 56.


Como é isto possível?

Ao calcular p x q (p,q= 6,7,8,9) , juntam-se p-5 na mão esquerda e ficam 10-p dedos. Na mão direita juntam-se q-5 dedos e sobram 10-q dedos. A soma dos dedos da mão esquerda com os dedos da mão direita representa as dezenas, ou seja, 10(p-5+ q-5). A este resultado adiciona-se o produto dos dedos que sobram de ambas as mãos, ou seja, (10-p)(10-q). Assim, o resultado é,
10(p-5+ q-5)+(10-p)(10-q)
ou seja,
10p - 50 + 10q - 50 + 100 -10p -10q + pq= p x q.

Este método simples de usar os dedos para calcular o produto de qualquer par de números compreendidos entre 6 e 10 foi extensivamente usado durante o Renascimento, ainda hoje é utilizado em certas zonas rurais da Europa e da Rússia.
Este método deve ser dado a conhecer aos alunos, em qualquer nível de escolaridade, visto ser um método de multiplicar interessante, curioso e motivante.